Note that, if the instrumentalist desires additional connectivity and functionality from the guitar pedals, additional hardware, additional cables, and/or additional power connections are generally required. For example, the instrumentalist can desire additional connectivity such that the instrumentalist can selectively turn on and off particular guitar pedals at the same time using a different controller that simultaneously sends signals to multiple guitar pedals. Because of the number of guitar pedals, the complex configurations, and the desire of instrumentalists to have greater flexibility, typical pedalboards become a complex maze of wires, routers, power cables, patch cords, etc. Moreover, each of these elements create an unstable and unpredictable state in which any of these elements can fail. For example, typical pedalboards include cabled connections between each of the guitar pedals, where these musical and power connections are prone to breaking, most often at the point of connection (e.g., repeated pulling out and reseating cables causes stress on the cables that eventually leads to failure). In the instance that the cable or pedal breaks, the entire audio signal is either blocked or corrupted, thereby leading to a complicated and inexact diagnosis of where the problematic element or elements occur. As such, each element is tested and each guitar pedal is isolated in the analysis to find the source of the issue.
Accordingly, it is desirable to provide a modular inline pedal system that overcomes these and other deficiencies of the prior art.
A modular inline pedal system and methods for using the same are provided.