The nonmagnetic particle boundaries that surround the ferromagnetic crystal particles include a nonmagnetic metal material. Here, the metal is considered to encompass semimetal. As the nonmagnetic metal material, for example, at least one of a metal oxide or a metal nitride can be used, and from the viewpoint of keeping the granular structure more stable, it is preferable to use a metal oxide. Examples of the metal oxide include a metal oxide containing at least one or more elements selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, Hf, and the like, and a metal oxide containing at least a Si oxide (that is, SiO2) is preferred. Specific examples of the metal oxide include SiO2, Cr2O3, CoO, Al2O3, TiO2, Ta2O5, ZrO2, HfO2, or the like. Examples of the metal nitride include a metal nitride containing at least one or more elements selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, Hf and the like. Specific examples of the metal nitride include SiN, TiN, AlN, or the like.
The CoCrPt-based alloy included in the ferromagnetic crystal particles and the Si oxide included in the nonmagnetic particle boundaries have an average composition represented by the following formula (1). This is because a saturation magnetization amount Ms that can curb the influence of the diamagnetic field and ensure a sufficient reproduced output can be achieved, thereby allowing further improvements in the recording and reproducing characteristics to be achieved. (CoxPtyCr100-x-y)100-z—(SiO2)z??(1) (In the formula (1), x, y, and z respectively represent values within the range of 69≤X≤75, 10≤y≤16, and 9≤Z≤12.)