白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Active random access memory

專利號
US10867642B2
公開日期
2020-12-15
申請人
TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED(TW Hsinchu)
發(fā)明人
Hsin-Cheng Chen; Jung-Rung Jiang; Yen-Hao Huang
IPC分類
G11C7/10; G11C11/418; G06F12/00; G11C11/419; G06F12/02; G11C7/22
技術(shù)領(lǐng)域
write,read,ns,commands,clock,master,memory,command,circuitry,pattern
地域: Hsinchu

摘要

Systems and methods for processing commands at a random access memory. A series of commands are received to read data from the random access memory or to write data to the random access memory. The random access memory can process commands at a first rate when the series of commands matches a pattern, and at a second, slower, rate when the series of commands does not match the pattern. A determination is made as to whether the series of commands matches the pattern based on at least a current command and a prior command in the series of commands. A ready signal is asserted when said determining determines that the series of commands matches the pattern, where the random access memory is configured to receive and process commands faster than the second rate when the pattern is matched and the ready signal is asserted over a period of multiple commands.

說明書

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIG. 2 is a timing diagram indicating one mechanism for handling transmission of read commands to a memory that completes read operations in differing (e.g., between a best case and a worst case time) times. In the example of FIG. 2, a 1 ns clock that is slower than the worst case timing is used. Read commands are consistently sent from a master device 202 to the SRAM 204 1 ns apart, and read data is returned in 1 ns increments. The mechanism of FIG. 2 results in sixteen read operations being performed in 17 ns regardless of whether the data being read is from one or sixteen different data words.

FIG. 3 is an example of a second mechanism for transmitting read commands that takes advantage of pattern detection circuitry in a memory. In the example of FIG. 3, a clock having a period of 0.5 ns is used. This clock is faster than the time necessary to perform a worst case read of 0.94 ns. Read commands cannot, thus, be blindly sent by the master device 302 at a 0.5 ns rate, as worst case reads would not complete before a next read command was received by the SRAM 304, causing a conflict or crash. The SRAM, thus, uses a ready signal (RDY) to indicate when read operations will be performed quickly (e.g., at the 0.34 ns rate) and that the master device 302 should send a next read operation promptly during the next 0.5 ns clock cycle.

權(quán)利要求

1
微信群二維碼
意見反饋