In some embodiments, the MTJ memory element 102 comprises the reference layer 106 and a free layer 108 disposed over the reference layer 106 and separated from the reference layer 106 by a barrier layer 110. The reference layer 106 is a ferromagnetic layer that has a magnetization direction that is “fixed”. As an example, the magnetization direction of the reference layer 106 can be “up”, i.e., perpendicular to the plane of the reference layer 106 pointing upwardly along the z-axis. The barrier layer 110, which can manifest as a thin dielectric layer or non-magnetic metal layer in some cases, separates the reference layer 106 from the free layer 108. The barrier layer 110 can be a tunnel barrier which is thin enough to allow quantum mechanical tunneling of current between the reference layer 106 and the free layer 108. In some embodiments, the barrier layer 110 can comprise an amorphous barrier, such as aluminum oxide (AlOx) or titanium oxide (TiOx), or a crystalline barrier, such as manganese oxide (MgO) or a spinel (e.g., MgAl2O4). The free layer 108 is capable of changing its magnetization direction between one of two magnetization states, which correspond to binary data states stored in the memory cell. For example, in a first state, the free layer 108 can have an “up” magnetization direction in which the magnetization of the free layer 108 is aligned in parallel with the magnetization direction of the reference layer 106, thereby providing the MTJ memory element 102 with a relatively low resistance. In a second state, the free layer 108 can have a “down” magnetization direction which is aligned and anti-paralleled with the magnetization direction of the reference layer 106, thereby providing the MTJ memory element 102 with a relatively high resistance. The magnetic directions disclosed herein could also be “flipped” or in-plane (e.g., pointing in the x and/or y directions), rather than up-down depending on the implementation. In some embodiments, the free layer 108 may comprise magnetic metal, such as iron, nickel, cobalt, boron, and alloys thereof, for example, such as a CoFeB alloy ferromagnetic free layer. Although this disclosure is described largely in terms of MTJs, it is also to be appreciated that it is applicable to spin valve memory elements, which may use a magnetically soft layer as the free layer 108, and a magnetically hard layer as the reference layer 106, and a non-magnetic barrier separating the magnetically hard layer and magnetically soft layer. The barrier layer 110 of a spin valve is typically a non-magnetic metal. Examples of non-magnetic metals include, but are not limited to: copper, gold, silver, aluminum, lead, tin, titanium and zinc; and/or alloys such as brass and bronze.