As used herein, “data” refers to any type of information, signal, or other result that is obtained from or sent to an electrical device such as a memory device, an integrated circuit, or another electrical device, or any information obtained from monitoring, interrogating, querying, or measuring, etc., an electrical device. The term “data” includes digital data, analog data, voltage values, current values, resistance values, vector values, scalar values, and/or flux values.
The XPM reading apparatus currently lacks a method of determining presence of the memory and proper electrical connection to the contacts robustly, without reading and writing fully to the memory. Generally speaking, implementations of the present disclosure provides for a method for reading a printed memory device, such as a XPM, which is more robust than the standard method used for reading the memory. The method uses XPM ASIC functions to set bit lines and word lines in high impedance such that individual cells of the memory are addressed. This allows for each cell to be verified as making good contact and also validates that the cell not producing excessive currents resulting in excessive charges, sometimes referred to as “l(fā)eaking” or being “shorted”. As one non-limiting example, 5 WLs amongst themselves and 5 BLS amongst themselves are physically connected to make a single large cell. In another non-limiting example, the memory device is read, written to, and then read back, which requires 3 memory operations to be performed. In just another non-limiting examples, a low voltage pulse is used to determine if all the cells are connected. This low voltage does not affect the memory in any way as it is below the switching voltage of the cell. This offers a way to check to make sure all WL pads and BL pads are making good contact, and ensures there are no shorted cells.