白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Main word line driver circuit

專利號(hào)
US10867661B2
公開日期
2020-12-15
申請(qǐng)人
Micron Technology, Inc.(US ID Boise)
發(fā)明人
Tae H. Kim; Christopher J. Kawamura
IPC分類
G11C7/22; G11C11/408; G11C11/4076
技術(shù)領(lǐng)域
word,transistor,gr0,swd,voltage,swds,volts,vnwl,nmos,vccp
地域: ID ID Boise

摘要

A main word line circuit provides a first and second row factor signals. The main word line circuit includes a pull-up circuit to drive a global word line to follow a first decoded address signal when the first row factor signal is at a first value. The main word line circuit includes an intermediate voltage circuit to drive the global word line to follow a value of the second row factor signal. A processing device drives the global word line to an active state by setting the first row factor signal to the first value when the first decoded address signal is at a high state, and drives the global word line to follow a value of the second row factor signal by setting the first row factor signal to the second value while the first decoded address signal is at the high state.

說明書

As discussed above, in some sub-word line drivers (e.g., see FIG. 4B), a PMOS transistor is included in each of the SWDs. The PMOS transistor allows for the word line WL to reach the full high voltage of the global word line GR. For example, if a global word line (e.g., GR0, GR1, GR2, or GR3) is at 3.2 volts, the corresponding local word line (e.g., WL0, WL1, WL2, or WL3) can be pulled up the full 3.2 volts by a PMOS transistor. However, PMOS transistors can require an n-well in a p-well from which the memory cell arrays are formed, thereby causing the layout area for the SWD to be larger. Due the large number of global word lines in a typical memory device, an NMOS-only SWD such as that shown in FIG. 5A reduces the amount of space needed for the SWDs by avoiding the need for an n-well for each of the SWDs, which reduces the area needed by the SWDs on a semiconductor substrate. However, by going to a NMOS-only SWD, full voltage at the local word line (e.g., WL0, WL1, WL2, WL3) may not be achieved unless the gate voltage necessary to couple the voltage from the global word line (e.g., GR0, GR1, GR2, GR3) to the respective local word line (e.g., WL0, WL1, WL2, WL3) is increased by at least the threshold voltage of the NMOS transistors. For example, the embodiment in FIG. 5A, as discussed above, a gate voltage of Vccp2 (e.g., 4.2 volts, 4.5 volts) is applied by the PH0 phase signal instead of a gate voltage of Vccp (e.g., 3.2 volts) used in conventional circuits. Thus, the voltage of the PHn phase signals applied to the gates of the pull-up NMOS transistors in NMOS-only SWDs can be at a higher voltage (e.g., Vccp2) than that (e.g., Vcc, Vccp, etc.) used for the pull-up PMOS transistors in conventional SWDs. In some embodiments, Vccp2 can be in a range of 3.8 volts to 4.7 volts. In some embodiments, the value of Vccp2 can be in a range of 4.2 volts to 4.5 volts, such as, for example, 4.2 volts or 4.5 volts. Conventional FX phase drivers are not able to provide such high PH phase signal voltages without experiencing stability and reliability issues.

權(quán)利要求

1
微信群二維碼
意見反饋