The dynamic neutron reflector assembly 500 is in thermal communication with heat exchanger 510 disposed on the opposite side from fuel region 504. The heat exchanger 510 may contain one or more types of liquid coolant circulating therethrough. As neutron reflector 500 exchanges heat with the heat exchanger 510, the heat exchanger 510 may transport the heat away from the dynamic neutron reflector assembly 500 as part of a secondary coolant circuit. The secondary coolant circuit may supply heat to electricity generation equipment, such as, for example, a steam-driven turbine. In an implementation, molten fuel salt may flow upward through the nuclear fuel region 504 and downward through the heat exchanger 510, thus exchanging heat as part of a primary coolant circuit. In other words, the heat exchangers may exchange heat with both the molten fuel salt and exchange heat with the flowing neutron reflector in the channels 502. The flow rate of neutron reflector material may be adjusted to vary contact time with the heat exchangers to vary the temperature of reflector material flowing in the channels 502. As the temperature of reflector material varies, its density changes accordingly. Changes in the density of the reflector material alter its neutron reflective characteristics as denser materials have a higher mass per unit volume and are therefore more likely to reflect neutrons. The channels 502 may be formed in geometric shapes including without limitation square, rectangular, round, circular, polygonal, etc.