In an implementation, the heat exchanger 614 is protected by one or more materials effective as a poison or neutron absorber to capture neutrons emanating from the fuel region 608 before the neutrons interact with, and cause radiation damage to, the heat exchanger 614. In an implementation, the heat exchanger 614 includes the one or more materials effective as a poison or neutron absorber. In another implementation, the one or more materials effective as a poison or neutron absorber are included in the dynamic reflector assembly 600.
FIG. 7 is a top-down schematic view of a molten nuclear fuel salt fast reactor core with fuel region 702 surrounded by a neutron reflector assembly 700. Neutron reflector assembly 700 contains a neutron reflector material 704 flowing through channels 712. In FIG. 7, neutron reflector material 704 flows upward toward the viewer. In an implementation, neutron reflector material 704 may circulate in channels 712 with input and output ports above fuel region 702 such that no fixtures or ports are needed beneath the reactor. In other implementations, neutron reflector material 704 may flow in only one direction, either in an upward or downward direction, through channels 712 with one port above fuel region 702 and another port below fuel region 702. In yet other implementations, neutron reflector material 704 may comprise a semi-stagnant or creeping flow through channels 712. In yet other implementations, neutron reflector material 704 may flow through radial input and output ports disposed between heat exchangers 706.