An adjusting operation 1404 adjusts fast neutron flux and thermal neutron flux within the reactor core during the sustained nuclear fission reaction by modifying the density of reflector material in the neutron reflector assembly. Density of reflector material in the neutron reflector assembly may be modified by altering the temperature of a flowing neutron reflector material in the reflector assembly. At higher temperatures, a flowing neutron reflector material tends to have lower density, and, at lower temperatures, a flowing neutron reflector material tends to have higher density. Changes in density will alter the alter the reflectivity characteristics of the reflector assembly because fast and thermal neutrons emanating from the reactor core will be more or less likely to be scattered by the reflector material depending on the likelihood of a collision with the nuclei of the reflector material in the reflector assembly. One way of altering the temperature of a flowing neutron reflector material is to alter its flow rate, and thus the thermal contact time the flowing reflector material has with a molten fuel salt. A higher flow rate may reduce contact time with a hot fuel salt, thus lowering the flowing reflector material's temperature and increasing the flowing reflector material's density. A lower flow rate may leave the flowing reflector material in thermal contact with the hot fuel salt for a relatively longer period of time, thus increasing its temperature and lowering the flowing reflector material's density.