As described above, the high frequency signal transmission cable 1 according to the present embodiment is configured to include the crack suppressing layer 7, between the insulator 3 and the plating layer 4, that can, with the crack suppressing layer 7 being provided in contact with the insulator 3, be bent while being moved in the longitudinal direction of the cable 1 relative to the bending of the insulator 3.
As a result, even when the high frequency signal transmission cable 1 is bent and routed, when the insulator 3 is stretched in the longitudinal direction of the cable 1 according to the bending of the insulator 3, the crack suppressing layer 7 is deformed (bent) in such a manner as to be slid between the plating layer 4 and the insulator 3 without following the stretching of the insulator 3, so the occurrence of a cracking in the plating layer 4 can be suppressed, and the distance between the inner conductor 2 and the plating layer 4 can be kept constant. As a result, it is possible to achieve the high frequency signal transmission cable 1 having the good transmission properties (attenuation properties) that is resistant to the occurrence of a high frequency (e.g., a band of 10 MHz to 6 GHz) signal attenuation even during long-distance transmission.
Further, since the crack suppressing layer 7 can be moved in the longitudinal direction of the cable 1 relative to the insulator 3, the high frequency signal transmission cable 1 is easy to bend, and it is therefore possible to achieve the high frequency signal transmission cable 1 that is resistant to the occurrence of a deterioration in the high frequency signal transmission properties even when bent and routed during long-distance cabling.