白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Method of producing anisotropic magnetic powder

專利號
US10867728B2
公開日期
2020-12-15
申請人
NICHIA CORPORATION(JP Anan)
發(fā)明人
Hisashi Maehara
IPC分類
B22F9/22; H01F1/059; H01F1/055; C01B21/06; B22F1/00; B22F9/24; B22F1/02
技術領域
sm,fe,coercive,in,magnetic,powder,particles,ihc,solution,oxide
地域: Anan

摘要

The present invention relates to a method of producing an anisotropic magnetic powder having good magnetic properties. The method of producing an anisotropic magnetic powder includes: pretreating an oxide containing Sm and Fe by heat treatment in a reducing gas atmosphere to obtain a partial oxide; heat treating the partial oxide in the presence of a reductant at a first temperature of 1000° C. or higher and 1090° C. or lower and then at a second temperature lower than the first temperature and in the range of 980° C. or higher and 1070° C. or lower to obtain alloy particles; and nitriding the alloy particles to obtain an anisotropic magnetic powder.

說明書

The precipitation step may be followed by washing and separating the resultant precipitate. The step of washing may be appropriately performed until the conductivity of the supernatant reaches 5 mS/m2 or lower. The step of separating the precipitate may be performed, for example, by adding and mixing a solvent, preferably water, to the resultant precipitate, followed by filtration, decantation, or other separation methods.

Oxidation Step

The oxidation step includes calcining the precipitate formed in the precipitation step to obtain an oxide containing Sm and Fe. The precipitate may be converted into an oxide by heat treatment, for example. The heat treatment of the precipitate requires the presence of oxygen. For example, the heat treatment may be performed in an air atmosphere. Since the presence of oxygen is necessary, the precipitate preferably contains oxygen atoms as nonmetallic constituents.

The heat treatment temperature in the oxidation step (hereinafter referred to as the oxidation temperature) is not particularly limited, but it is preferably 700 to 1300° C., more preferably 900 to 1200° C. If the temperature is below 700° C., the oxidation tends to be insufficient. If the temperature exceeds 1300° C., the intended powder particle shape, average particle size, and particle size distribution of the magnetic powder tend not to be obtained. The heat treatment duration is also not particularly limited, but it is preferably one to three hours.

The resultant oxide consists of oxide particles in which Sm and Fe have been sufficiently mixed microscopically and which reflect the properties of the precipitate such as shape and particle size distribution.

Pretreatment Step

權利要求

1
微信群二維碼
意見反饋