The bin width function may be related to known or expected variations in spectral complexity or peak density. For example, the bin width may be chosen to be smaller in regions of the one or more spectra which are expected to contain a higher density of peaks.
Obtaining the one or more sample spectra may comprise receiving the one or more sample spectra from a first location at a second location.
The method may comprise transmitting the one or more sample spectra from the first location to the second location.
The first location may be a remote or distal sampling location and/or the second location may be a local or proximal analysis location. This can allow, for example, the one or more sample spectra to be obtained at a disaster location (e.g., earthquake zone, war zone, etc.) but analysed at a relatively safer or more convenient location.
One or more sample spectra or parts thereof may be periodically transmitted and/or received at a frequency in Hz in a range selected from a group consisting of: (i) ≤ or ≥0.1; (ii) 0.1-0.2; (iii) 0.2-0.5; (iv) 0.5-1.0; (v) 1.0-2.0; (vi) 2.0-5.0; (vii) 5.0-10.0; and (viii) ≤ or ≥10.0.
One or more sample spectra or parts thereof may be transmitted and/or received when the sample spectra or parts thereof are above an intensity threshold.
The intensity threshold may be based on a statistical property of the one or more sample spectra or parts thereof, such as one or more selected peaks.
The statistical property may be based on a total ion current (TIC), a base peak intensity, an average or quantile intensity value or an average or quantile of some function of intensity for the one or more sample spectra or parts thereof, such as one or more selected peaks.