Embodiments of the present invention perform mass spectrometry under unconventional conditions where Kn has values near unity and below (less than 10 and less than 1, for example). At such pressures and fundamental length scales, the mean free path is similar to, or less than, the critical experimental length scale. Embodiments of the invention maybe particularly suitable for Paul trap mass analyzers, commonly referred to as ion trap mass analyzers, that have fundamental length scales that are less than 1 mm, e.g., the radius of the ring electrode, r0, is 1 mm or less. Embodiments of the invention are directed to high-pressure mass spectrometers that can be operated at pressures of 50 mTorr and above (e.g., to 1 Torr, 10 Torr, 100 Torr or 1000 Torr, for example) and/or with Kn values of less than about 10, or even than about one.
The term “high resolution” refers to mass spectra that can be reliably resolved to less than 1 Th, e.g., having a line width less than 1 Th (FWHM). “Th” is a Thomson unit of mass to charge ratio.
The high resolution operation may allow the use of monoisotopic mass to identify the substance under analysis. The term “high detector sensitivity” refers to detectors that can detect signals on a low end ranging from 1-100 charges per second.