Embodiments of the invention are directed to electrospray ionization (ESI)-mass spectrometer analysis systems. The systems include an ESI device with at least one emitter configured to electrospray ions and a mass spectrometer in fluid communication with the at least one emitter of the ESI device. The mass spectrometer includes a mass analyzer held in a vacuum chamber. The vacuum chamber is configured to have a high (background/gas) pressure of about 50 mTorr or greater (by way of example, about 1 Torr, about 2 Torr, about 10 Torr or about 100 Torr) during operation. The mass spectrometer also includes a detector in communication with the mass analyzer. During operation, the ESI device is configured to either; (a) electrospray ions into a spatial region external to the vacuum chamber and at atmospheric pressure adjacent to an inlet device attached to the vacuum chamber; or (b) electrospray ions directly into the vacuum chamber with the mass analyzer. For (a), the inlet device intakes the electrosprayed ions external to the vacuum chamber with the mass analyzer and discharges the ions into the vacuum chamber with the mass analyzer
The detector can be held in the vacuum chamber with the mass analyzer.
The detector can be spaced apart from the mass analyzer in the vacuum chamber by a distance of about 1 to about 10 mm.
The ESI device can be configured to electrospray ions into the spatial region external to the vacuum chamber. The ESI device can be positioned external to the vacuum chamber with the mass analyzer. The inlet device can be spaced apart from the ESI device. An end portion of the inlet device can reside inside the vacuum chamber with the mass analyzer to be spaced apart from an ion entrance of the mass analyzer by a distance that is between 1-50 mm.