FIGS. 11A and 11C illustrate an exemplary timing diagram that can be used to carry out/control various components of the analyzer system 10 with the mass spectrometer 100. During ion injection, a focusing electrode, e.g., the lens 38 or 48 (if used) is ON to focus the ions to the mass analyzer 30. The drive RF amplitude can then be held constant for a defined time, e.g., about 5 ms, to allow trapped ions to collisionally cool towards the center of the trap. The drive RF amplitude can be linearly ramped to perform a mass instability scan and eject ions toward the detector 40 in order of increasing m/z. Data is acquired during the mass instability scan to produce a mass spectrum and the convective transport can enhance the signal for detection. Finally, the drive RF amplitude 88d can be reduced to a low voltage to clear any remaining ions from the trap 30 and prepare it for the next scan. A number of ion manipulation strategies can be applied to ion trap devices such as CITs, as is well known to those trained in the art. Different strategies to eject, isolate, or collisionally dissociate ions can be applied to the ion trapping structures.
Optionally, as shown in FIGS. 11B and/or 11C, an axial RF signal can be synched to be applied with the start of the RF amplitude signal linear ramp so as to be substantially simultaneously gated on to perform resonance ejection during the mass scan for improved resolution and mass range