白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrospray ionization interface to high pressure mass spectrometry and related methods

專利號(hào)
US10867781B2
公開(kāi)日期
2020-12-15
申請(qǐng)人
The University of North Carolina at Chapel Hill(US NC Chapel Hill)
發(fā)明人
John Michael Ramsey; William McKay Gilliland, Jr.
IPC分類
H01J49/16; H01J49/24; H01J49/00; H01J49/04; B01L3/00
技術(shù)領(lǐng)域
mass,esi,analyzer,about,mm,inlet,chamber,ion,vacuum,trap
地域: NC NC Chapel Hill

摘要

An electrospray ionization (ESI)-mass spectrometer analysis systems include an ESI device with at least one emitter configured to electrospray ions and a mass spectrometer in fluid communication with the at least one emitter of the ESI device. The mass spectrometer includes a mass analyzer held in a vacuum chamber. The vacuum chamber is configured to have a high (background/gas) pressure of about 50 mTorr or greater during operation. During operation, the ESI device is configured to either; (a) electrospray ions into a spatial region external to the vacuum chamber and at atmospheric pressure, the spatial extent being adjacent to an inlet device attached to the vacuum chamber, the inlet device intakes the electrosprayed ions external to the vacuum chamber with the mass analyzer and discharges the ions into the vacuum chamber with the mass analyzer; or (b) electrospray ions directly into the vacuum chamber with the mass analyzer.

說(shuō)明書

Miniature mass spectrometry (ESI-MASS SPECTROMETER) experiments were performed with a custom atmospheric interface and a differentially pumped vacuum system. A schematic of a typical experimental setup is shown in FIG. 1.

The microchip-ESI device (FIGS. 5A/5B CE or Infusion) was mounted on a custom x-y-z stage and positioned approximately 5-10 mm from the inlet capillary 15 (FIG. 1). A single sided copper clad circuit board (M.G. Chemicals, Burlington, Ontario, Canada) was used to shield the ESI orifice from the voltages applied to the reservoirs (not shown). The corner of the microfluidic devices extended about 5 mm through a slit in the board. The circuit board was held at +1 kV for CE experiments and GND for infusion experiments.

The microchip device shown in FIG. 5A for capillary electrophoresis and FIG. 5B for infusion, were glass microchips. The channels were etched to a depth of 10 μm. Reservoirs are designated with circles and indicate sample (S), background electrolyte (BG), sample waste (SW), and electroosmotic pump (P). For some of the experiments, the microchip had an injection cross, a 46-cm serpentine separation channel, and an electoosmotic pumping channel. The infusion device (5B) had of a 5.5-cm channel and an electoosmotic pumping channel, and both reservoirs are filled with the same sample.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋