白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrospray ionization interface to high pressure mass spectrometry and related methods

專(zhuān)利號(hào)
US10867781B2
公開(kāi)日期
2020-12-15
申請(qǐng)人
The University of North Carolina at Chapel Hill(US NC Chapel Hill)
發(fā)明人
John Michael Ramsey; William McKay Gilliland, Jr.
IPC分類(lèi)
H01J49/16; H01J49/24; H01J49/00; H01J49/04; B01L3/00
技術(shù)領(lǐng)域
mass,esi,analyzer,about,mm,inlet,chamber,ion,vacuum,trap
地域: NC NC Chapel Hill

摘要

An electrospray ionization (ESI)-mass spectrometer analysis systems include an ESI device with at least one emitter configured to electrospray ions and a mass spectrometer in fluid communication with the at least one emitter of the ESI device. The mass spectrometer includes a mass analyzer held in a vacuum chamber. The vacuum chamber is configured to have a high (background/gas) pressure of about 50 mTorr or greater during operation. During operation, the ESI device is configured to either; (a) electrospray ions into a spatial region external to the vacuum chamber and at atmospheric pressure, the spatial extent being adjacent to an inlet device attached to the vacuum chamber, the inlet device intakes the electrosprayed ions external to the vacuum chamber with the mass analyzer and discharges the ions into the vacuum chamber with the mass analyzer; or (b) electrospray ions directly into the vacuum chamber with the mass analyzer.

說(shuō)明書(shū)

The separation field strength was 400 V/cm with a flow rate of about 165 nL/min. Approximately 7 fmol of peptide mixture was injected during a 0.5 s gated injection. The mini-CIT (r0=250 μm) was operated at 1.2 Torr with an RF drive frequency of 7.1 MHz. The four peptides and fluorescein were separated and detected. The calculated separation efficiencies for these separations were approximately 445,000 theoretical plates for the mini-CIT and 490,000 theoretical plates for the Synapt G2. Both mass spectrometers were able to detect these fast and highly efficient separations, with the discrepancy in calculated efficiency resulting from differences in mass spectral sampling rate. The Synapt G2 collected spectra at about 10 Hz, while the mini-CIT collected spectra at about 3 Hz. The CIT is limited by the time required to accumulate, analyze, and clear ions from the trap. With sensitivity improvements, the accumulation time can likely be minimized and the sampling rate increased. Fluorescein proved not as easily detected with the mini-CIT but could easily be replaced with another dead time marker. Detection of these peptides following CE separation shows that a miniature CIT based mass spectrometer operated at high pressure can produce comparable results to that of a commercial instrument. The Synapt G2 showed slightly better S/N, but this simple comparison demonstrates the viability of a mass spectrometer using a mini-CIT as a detector for the separation of biomolecules.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋