白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Selective removal of an etching stop layer for improving overlay shift tolerance

專利號(hào)
US10867805B2
公開日期
2020-12-15
申請(qǐng)人
Taiwan Semiconductor Manufacturing Co., Ltd.(TW Hsinchu)
發(fā)明人
Chien-Hua Huang; Tzu-Hui Wei; Cherng-Shiaw Tsai
IPC分類
H01L21/311; H01L21/768; H01L23/528; H01L23/522; H01L21/033; H01L21/8234; H01L21/02; H01L23/532; H01L21/321
技術(shù)領(lǐng)域
esl,ild,conductive,silicon,oxide,etching,in,etch,metal,portion
地域: Hsin-Chu

摘要

An example embodiment of the present disclosure involves a method for semiconductor device fabrication. The method comprises providing a structure that includes a conductive component and an interlayer dielectric (ILD) that includes silicon and surrounds the conductive component, and forming, over the conductive component and the ILD, an etch stop layer (ESL) that includes metal oxide. The ESL includes a first portion in contact with the conductive component and a second portion in contact with the ILD. The method further comprises baking the ESL to transform the metal oxide located in the second portion of the ESL into metal silicon oxide, and selectively etching the ESL so as to remove the first portion of the ESL but not the second portion of the ESL.

說明書

The opening 180 will be filled by a conductive material later, for example, to form a conductive component such as a via or a metal line. Ideally, the opening 180 should be aligned with the conductive component 120, such that a good electrical connection can be established between the conductive component 120 and the conductive component to be formed in the opening 180. However, as is often the case in real world semiconductor fabrication, the alignment between the opening 180 and the conductive component 120 is imperfect due to overlay control capability limitations. This problem is exacerbated as the geometry sizes shrink for each semiconductor technology node. Consequently, as shown in FIG. 1F, a misalignment exists between the opening 180 and the conductive component 120, which is manifested as the opening 180 being shifted “to the right” such that the opening 180 is now located above a portion of the ILD 130. In conventional semiconductor devices, such a misalignment may have led to an undesirable etching of the portion of the ILD 130 located under the opening 180 as a result of over-etching. The over-etched portion of the ILD 130 would then be filled with the conductive material later when the conductive material fills the opening 180. This may cause problems such as time-dependent dielectric breakdown (TDDB) or leakage within the semiconductor device 100.

權(quán)利要求

1
微信群二維碼
意見反饋