Then, as shown in FIG. 7, in some embodiments, a plurality of contacts 190 is formed in the ILD layer 180. In some embodiments, the contacts 190 are connected to the silicide top layers 170 on the doped semiconductor material pattern 134, the S/D regions 160 and on the heavily doped portions 135B and 136B, respectively. In some embodiments, the formation of the contacts 190 includes forming a patterned mask layer (not shown) over the ILD layer and dry etching the ILD layer using the patterned mask layer as a mask to form openings exposing the silicide top layers 170. In certain embodiments, the ILD layer 180 may further include an etch stop layer (not shown) therein. Thereafter, a conductive material is deposited and filled into the contact openings to form the contacts 190. The conductive material is a metal layer including aluminum, copper, tungsten, or alloys thereof, and the conductive material may be formed by performing a CVD process, for example.
In alternative embodiments, the ILD layer 180 formed in the isolating region may further include an optional insulator material (not shown) filled between the portions 135B, 136A and 136B in the isolating region IR. The formation of the insulator material includes sequentially depositing a silicon oxide layer, a silicon nitride layer and a silicon oxide layer covering and filling between the portions 135B, 136A and 136B in the isolating region IR.