白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Conformal transfer doping method for fin-like field effect transistor

專利號
US10868151B2
公開日期
2020-12-15
申請人
Taiwan Semiconductor Manufacturing Co., Ltd.(TW Hsinchu)
發(fā)明人
Sai-Hooi Yeong; Sheng-Chen Wang; Bo-Yu Lai; Ziwei Fang; Feng-Cheng Yang; Yen-Ming Chen
IPC分類
H01L21/265; H01L29/66; H01L21/225; H01L29/165
技術(shù)領(lǐng)域
doped,fin,finfet,amorphous,layer,fins,in,structure,knock,silicon
地域: Hsinchu

摘要

Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.

說明書

In FIG. 2A, FinFET device 200 includes a substrate (wafer) 210. Substrate 210 includes a crystalline material, which generally refers to a material having an ordered atomic structure (often referred to as a crystalline structure). For example, in the depicted embodiment, substrate 210 includes silicon in a crystalline structure. Alternatively or additionally, substrate 210 includes another elementary semiconductor, such as germanium; a compound semiconductor, such as silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; an alloy semiconductor, such as silicon germanium (SiGe), GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP; or combinations thereof. Alternatively, substrate 210 is a semiconductor-on-insulator substrate, such as a silicon-on-insulator (SOI) substrate, a silicon germanium-on-insulator (SGOI) substrate, or a germanium-on-insulator (GOI) substrate. Semiconductor-on-insulator substrates can be fabricated using separation by implantation of oxygen (SIMOX), wafer bonding, and/or other suitable methods. Substrate 210 can include various doped regions (not shown) depending on design requirements of FinFET device 200. In some implementations, substrate 210 includes p-type doped regions (for example, p-type wells) doped with p-type dopants, such as boron, indium, other p-type dopant, or combinations thereof. In some implementations, substrate 210 includes n-type doped regions (for example, n-type wells) doped with n-type dopants, such as phosphorus, arsenic, other n-type dopant, or combinations thereof. In some implementations, substrate 210 includes doped regions formed with a combination of p-type dopants and n-type dopants. The various doped regions can be formed directly on and/or in substrate 210, for example, providing a p-well structure, an n-well structure, a dual-well structure, a raised structure, or combinations thereof. An ion implantation process, a diffusion process, and/or other suitable doping process can be performed to form the various doped regions in substrate 210.

權(quán)利要求

1
微信群二維碼
意見反饋