In another embodiment, a method for semiconductor processing is provided. The method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium having a concentration of about 20 atomic percent (at. %) or greater, forming a dielectric layer over the active area, forming an opening through the dielectric layer to expose at least a portion of an upper surface of the source/drain region, implanting a first species comprising gallium into the exposed source/drain region, after implanting the first species, implanting a second species comprising a p-type dopant into the exposed source/drain region, subjecting the exposed source/drain region to a first anneal process operating at a first temperature window for a first duration, after the first anneal process, subjecting the exposed source/drain region to a second anneal process operating at a second temperature window for a second duration, the second temperature being higher than the first temperature window and the second duration being shorter than the first duration, forming a silicide region at the upper surface of the exposed source/drain region, and forming a conductive feature in the opening to the upper surface of the source/drain region.