Embodiments of the present disclosure compensate for the dopant diffusion from the source/drain regions into the channel region by varying the concentration of germanium (e.g., a stress-inducing material) in the channel region in accordance with the concentration of the diffused dopant. For example, in the p-type device region, the dopant (e.g., boron) diffused into the channel region may reduce the threshold voltage by providing more carriers in the channel region. Therefore, for areas of the channel region with high concentrations of dopant (e.g., boron), a lower concentration of germanium is formed; and for areas of the channel region with low concentrations of dopant (e.g., boron), a higher concentration of germanium is formed. Since the dopant (e.g., boron) provides carrier (e.g., p-type carrier) which may lower the threshold voltage, and since germanium induces stress in the channel region of the p-type device, which stress may increase carrier mobility and lower threshold voltage, a lower concentration of germanium (thus lower carrier mobility) may balance out a higher concentration of boron (thus higher carrier concentration). Similarly, a higher concentration of germanium (thus higher carrier mobility) may balance out a lower concentration of boron (thus lower carrier concentration). By tuning the germanium concentration in the channel region to counteract the dopant (e.g., boron) concentration in the channel region, a substantially uniform threshold voltage is achieved for the FinFET device 100.