白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Conductive paste and conductive track or coating

專利號(hào)
US10868200B2
公開日期
2020-12-15
申請(qǐng)人
JOHNSON MATTHEY PUBLIC LIMITED COMPANY(GB London)
發(fā)明人
Beatriz Cela Greven; Jonathan Charles Shepley Booth; Nicholas Nowak; Simon Johnson; Tobias Droste
IPC分類
H01L31/0224; H01B1/22
技術(shù)領(lǐng)域
wt,inorganic,particle,or,μm,paste,conductive,mixture,solar,less
地域: London

摘要

The present invention relates to a conductive paste for forming a conductive track or coating on a substrate, particularly suitable for use in solar cells. The paste comprises a solids portion dispersed in an organic medium, the solids portion comprising electrically conductive material and an inorganic particle mixture wherein the inorganic particle mixture comprises substantially crystalline particles. The present invention also relates to a method of preparing a conductive paste, a method for the manufacture of a surface electrode of a solar cell, an electrode for a solar cell and a solar cell.

說明書

The quality of the contact between the conductive track and the semiconductor wafer is instrumental in determining the efficiency of the final solar cell. The best glass frits need to be optimised to flow at the correct temperature, and to provide the correct degree of etching of the antireflective layer. If too little etching is provided, then there will be insufficient contact between the semiconductor wafer and the conductive track, resulting in a high contact resistance. Conversely, excessive etching may lead to deposition of large islands of silver in the semiconductor, disrupting its p-n junction and thereby reducing its ability to convert solar energy into electrical energy.

Much recent attention has focussed on improving the glass frit materials included in conductive pastes for photovoltaic cells, to provide a good balance of properties.

Conductive pastes comprising conductive powder, glass frit, and sometimes one or more additional additives, all dispersed in an organic medium, are also used to form conductive tracks or conductive coatings in thin film solar cells, which are made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass or metal, and in a range of other electronics applications, including passive electronic components, e.g. in terminal electrodes for zinc oxide varistor components, terminations for MLCC (multi-layer ceramic capacitors), electrodes on TCO (transparent conductive oxide) coated glass substrate, conductive layers on NTC (negative temperature coefficient) thermistors, metallization of functional piezoceramics; and automotive applications including backlights, sidelights, heatable mirrors and windscreens, and antennae.

SUMMARY OF THE INVENTION

權(quán)利要求

1
微信群二維碼
意見反饋