The solids portion of the conductive paste of the present invention may include 80 to 99.9 wt % of electrically conductive material. For example, the solids portion may include at least 80 wt %, at least 82 wt %, at least 85 wt %, at least 87 wt % at least 90 wt %, at least 93 wt % or at least 95 wt % of electrically conductive material. The solids portion may include 99.9 wt % or less, 99.5 wt % or less, 99 wt % or less, 95 wt % or less, 92 wt % or less, 90 wt % or less, 88 wt % or less, or 86 wt % or less of electrically conductive material.
Generally, the electrically conductive material may be the main component of the solids portion, that is, the ingredient of the solids portion whose content is the highest.
The electrically conductive material may comprise one or more metals selected from silver, copper, nickel and aluminium. Preferably, the electrically conductive material comprises or consists of silver. This is particularly preferable in solar cell applications, e.g. where the paste is intended for contact with an n-type emitter of a solar cell. In some embodiments, particularly where the paste is intended for contact with a p-type emitter of a solar cell, the conductive material may comprise aluminium, e.g. it may be a blend of silver and aluminium.
The electrically conductive material may be provided in the form of particles, e.g. metal particles. The form of the particles is not particularly limited, but may be in the form of flakes, spherical particles, granules, crystals, powder or other irregular particles, or mixtures thereof.