白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

LED utilizing internal color conversion with light extraction enhancements

專利號
US10868213B2
公開日期
2020-12-15
申請人
Lumileds LLC(US CA San Jose)
發(fā)明人
Robert David Armitage; Isaac Harshman Wildeson; Parijat Pramil Deb
IPC分類
H01L33/10; H01L33/00; H01L33/50; H01L33/46; H01L33/08
技術(shù)領(lǐng)域
qw,epitaxial,layer,el,pl,may,qws,dichroic,reflector,be
地域: CA CA San Jose

摘要

A light emitting diode (LED) device may include an n-type layer formed on a transparent substrate. A photoluminescent (PL) in the n-type layer quantum well (QW) and an electroluminescent (EL) QW may be formed on the n-type layer. The PL QW and the EL QW may be separated from one another by a portion of the n-type layer. A p-type layer may be formed on the EL QW. Trenches may be formed extending into the n-type layer, the trenches defining an emitting area. A passivation material may be formed on sidewalls of the trenches and n-type contacts may be formed therein. A p-type contact may be formed on an upper surface of the p-type layer. A dichroic mirror may be formed on at least a lower surface of the transparent substrate.

說明書

One or more of the following elements may be included to increase the probability that shorter wavelength photons generated by EL may be absorbed in the longer wavelength QWs.

A dichroic mirror may be coated on one or more external surfaces of the LED chip. The dichroic mirror may have a high reflectivity at the shorter wavelength of EL emissions and a low reflectivity at the longer wavelength of PL emissions over a wide range of angles of incidence.

A photonic crystal may be patterned into one or more external or internal surfaces of the LED. The periodicity of the photonic crystal may be selected to minimize diffraction of the shorter wavelength EL emissions and maximize diffraction of the longer wavelength PL emissions.

An epitaxial mirror may be grown within the epitaxial layer structure of the LED wafer. This epitaxial mirror may have a higher angle-averaged reflectivity for the shorter wavelength EL emissions as compared to the longer-wavelength PL emissions.

A distributed Bragg reflector (DBR) may be integrated into the wafer. The DBR may be formed by the growth of a sequence of epitaxial layers with differences in doping and/or alloy composition combined with a post-growth electrochemical reaction. The post-growth reaction may be selective with respect to doping and/or alloy composition and may reduce the effective refractive index of some of the layers in the epitaxial sequence. The thickness of the epitaxial layers may be chosen to result in a DBR periodicity that maximizes reflectivity corresponding to the shorter wavelength of EL emissions.

The distance between the reflecting electrode described above and the EL emitting QWs may be selected to control the internal radiation angular distribution of the EL emissions in a way that maximizes its absorption in the PL emitting QWs.

權(quán)利要求

1
微信群二維碼
意見反饋