白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

LED utilizing internal color conversion with light extraction enhancements

專利號
US10868213B2
公開日期
2020-12-15
申請人
Lumileds LLC(US CA San Jose)
發(fā)明人
Robert David Armitage; Isaac Harshman Wildeson; Parijat Pramil Deb
IPC分類
H01L33/10; H01L33/00; H01L33/50; H01L33/46; H01L33/08
技術(shù)領(lǐng)域
qw,epitaxial,layer,el,pl,may,qws,dichroic,reflector,be
地域: CA CA San Jose

摘要

A light emitting diode (LED) device may include an n-type layer formed on a transparent substrate. A photoluminescent (PL) in the n-type layer quantum well (QW) and an electroluminescent (EL) QW may be formed on the n-type layer. The PL QW and the EL QW may be separated from one another by a portion of the n-type layer. A p-type layer may be formed on the EL QW. Trenches may be formed extending into the n-type layer, the trenches defining an emitting area. A passivation material may be formed on sidewalls of the trenches and n-type contacts may be formed therein. A p-type contact may be formed on an upper surface of the p-type layer. A dichroic mirror may be formed on at least a lower surface of the transparent substrate.

說明書

The n-type layer 204 may be formed using conventional deposition techniques, such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or other epitaxial techniques. In an epitaxial deposition process, chemical reactants provided by one or more source gases are controlled and the system parameters are set so that depositing atoms arrive at a deposition surface with sufficient energy to move around on the surface and orient themselves to the crystal arrangement of the atoms of the deposition surface. Accordingly, the n-type layer 204 may be grown on the sapphire substrate 202 using conventional epitaxial techniques. A nucleation layer (not shown) may be formed on the substrate 202 prior to the n-type layer 204. The nucleation layer may comprise GaN or AlN.

The p-type layer 208 may be formed using the conventional epitaxial deposition techniques described above. The p-type layer 208 may comprise any Group III-V semiconductors, including binary, ternary, and quaternary alloys of gallium, aluminum, indium, and nitrogen, also referred to as III-nitride materials. In an example, the p-type layer 208 may comprise GaN. The p-type layer 208 may be doped with p-type dopants, such as Mg. An electron blocking layer (not shown) may be formed below the p-type layer 208.

權(quán)利要求

1
微信群二維碼
意見反饋