Referring now to FIGS. 7A-7E, cross section views illustrating forming an LED device are shown. FIG. 7A shows forming trenches 702 in the green LED utilizing PL of FIG. 2B is shown. As described above, the substrate 202 may be a transparent growth substrate and may be a patterned sapphire substrate. As described above, a nucleation layer (not shown) may be formed on the patterned side of substrate 202 prior to the formation of the n-type layer 204. The nucleation layer may comprise GaN or AlN. The side of the substrate 202 opposite of the patterned side may be grinded and polished to an optically smooth surface or surfaces.
The trenches 702 may be formed using a conventional directional etching process, such as dry etching. The trenches may extend through an entire thickness of the p-type layer 208, an entire thickness of the EL QW 210, an entire thickness of the underlying portion of the n-type layer 204 between the EL QW 210 and the PL QW 206, an entire thickness of the PL QW 206, and portion of the underlying n-type layer 204. The trenches 702 may define an emitting area 712.
FIG. 7B shows forming a conformal dielectric passivation layer 704 in the trenches 702 and on the p-type layer 208. The dielectric passivation layer 704 may be formed using a conventional deposition technique, such as, for example, CVD, PECVD, ALD, evaporation, sputtering, chemical solution deposition, spin-on deposition, or other like processes. The dielectric passivation layer 704 may comprise materials such as but not limited to SiO2 or SiNx