At least one of the anode 10-2 and the cathode 10-1 may be the electrode 10 described above.
At this time, at least one of the anode 10-2 and the cathode 10-1 may be disposed such that the other surface of the porous support 11 on which the catalyst layer 12 is not disposed faces the polymer electrolyte membrane. That is, the part of the second region 14 of the porous support 11 may face the polymer electrolyte membrane 20.
As a result, the second region 14 which only includes the binder resin, the first region 13, which includes the binder resin and the catalyst, and the catalyst layer 12, which includes the binder resin and the catalyst, and contains a higher amount of the catalyst than the first region 13 are sequentially laminated on the polymer electrolyte membrane 20. That is, the polymer electrolyte membrane 20 may be disposed under the second region 14 of the porous support 11.
The polymer electrolyte membrane 20, which is a solid polymer electrolyte having a thickness of 10 to 200 μm, has an ion exchange function of transferring hydrogen ions generated in the catalyst layer 12 of the anode 10-2 to the catalyst layer 12 of the cathode 10-1.
In another embodiment of the present invention, the present invention provides a fuel cell system comprising the membrane-electrode assembly 50.