Further, the fuel passage 1 may be formed to be spaced apart from a seating groove (not illustrated) which is formed in the sealant layer 20 to seat the unit cell, and the gas passage 1 may be formed to be bonded to both sides of the seating groove. The gas passage 2 is formed to be connected to the seating groove, so that the reaction gas which is supplied to the air electrode interconnector 40 may move in a vertical direction from the upper side to the lower side.
Further, the sealant layer 20 may be formed of glass or crystalized glass. Primarily, the sealant layer 20 needs to be sealed and bonded to a material to be bonded and satisfy all physical properties such as a coefficient of thermal expansion and heat resistance. Therefore, a glass or crystalized glass material may be appropriate. As a glass material, any one or more of soda-lime silicates, alkali silicates, alkaline-earth silicate, and alkali borosilicate glass may be included. Further, as the crystalized glass, any one or more of SrO—La2O3-Al2O3-B2O3-SiO2, BaO-Al2O3-SiO2-B2O3, MgO—Al2O3-P2O5, BaO—Al2O3-SiO2-ZnO, and CaO—TiO2-SiO2 based glasses may be included.
The sealant layer 20 is formed of a single composition such as glass or crystalized glass, so that long-term durability and chemical stability of the fuel cell may be increased. Further, the fuel cell 100 may be sealed only by pressurization during a sealing process among manufacturing processes of the solid oxide fuel cell 100, so that the manufacturing processes may be simplified and the economic effect may be achieved.