The present invention is contrived to solve the above-described problems, and an object of the present invention is to provide a solid oxide fuel cell including a sealant layer which is formed of a single composition to increase long-term durability and stability in a chemical reaction and seal the fuel cell by one compression.
Further, an object of the present invention is to provide a solid oxide fuel cell in which a support is located on an inner wall of a passage formed in a sealant layer to omit a window frame and control a thickness of the sealant layer.
A solid oxide fuel cell according to the present invention includes: a unit cell; a sealant layer which encloses a periphery of the unit cell; and a plurality of interconnects which is located above and below the sealant layer and has one or more fuel manifolds and one or more gas manifolds, in which in the sealant layer, one or more fuel passages and one or more gas passages are formed, and the sealant layer includes a support which is supported in at least a part of inner sides of the fuel passage and the gas passage.
The support may be formed of ceramics having high electrical resistivity.
Examples of ceramics may include any one or more of silicon nitride ceramics, silicon carbide ceramics, sialon ceramics, alumina ceramics, zirconia ceramics, bio ceramics, titania ceramics, BaTiO3 ceramics, SrTiO3 ceramics, silica ceramics, cordierite ceramics, mica ceramics, SiO ceramics, and SiAu4 ceramics.
The support may be extendable in upper and lower directions.