(5) High activity: the vanadium ions are activated by means of ultraviolet irradiation, which significantly improves the activity of the electrolyte.
(6) Convenient transportation: the process for producing the electrolyte is short, and suitable for on-site configuration of vanadium batteries, and the low-valence vanadium oxide can be transported, thereby greatly reducing the transportation cost.
(7) 3.5-valence electrolyte: the electrolyte is suitable for configuration of a new vanadium battery stack, and can be directly added to positive and negative electrode chambers for use, which is simple to operate.
The present invention has the advantages of low energy consumption in production and low operation cost, high product purity, stable quality, simple electrolyte preparation and assembly and so on, and is suitable for the large-scale industrial production of the all-vanadium redox flow battery electrolyte, with good economic and social benefits.
The accompanying drawing is used to provide further illustration of the present invention and constitutes a part of the specification. It is used to explain the present invention together with the examples of the present invention, rather than limit the present invention.