As shown in Table 1, in the secondary batteries according to Examples 1 to 10 using the separator in which the solid electrolyte layer was provided on one of the main surfaces of the porous self-supporting film and the porous self-supporting film and the solid electrolyte layer were adhered with the same polymeric material as the polymeric material contained in the solid electrolyte layer, high charge-and-discharge efficiency and high discharge capacity in the charge-and-discharge cycle were implemented.
On the other hand, in the secondary battery according to Comparative Example 1 in which the cellulose nonwoven fabric was used for the separator, although the discharge capacity was high, the charge-and-discharge efficiency was low. This may be because water decomposition was not suppressed on the negative electrode side. In the secondary battery according to Comparative Example 2 using the separator in which the solid electrolyte layers were provided on both the main surfaces of the porous self-supporting film by a dipping method, both the charge-and-discharge efficiency and the discharge capacity were low. This may be because the electrolyte impregnating property of the porous self-supporting film decreases and the internal resistance increases. In the secondary batteries according to Comparative Examples 3 and 4 using the separator in which the solid electrolyte layer was heated and adhered onto the porous self-supporting film by a hot-melt method, although the charge-and-discharge efficiency was high, the discharge capacity was low. This may be because an insulating layer formed of a binder contained in the solid electrolyte layer was provided at an interface between the solid electrolyte layer and the porous self-supporting film by the hot-melt method.