白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolyte salts for rechargeable magnesium-ion batteries

專利號(hào)
US10868335B2
公開日期
2020-12-15
申請(qǐng)人
UCHICAGO ARGONNE, LLC(US IL Chicago)
發(fā)明人
Ka-Cheong Lau; Chen Liao
IPC分類
H01M10/0568; C07F5/02; H01M10/054; H01M10/0569; C07F5/06
技術(shù)領(lǐng)域
mg,magnesium,triglyme,ocr3,in,electrode,ether,ion,salt,thf
地域: IL IL Chicago

摘要

Magnesium salts suitable for use in an electrolyte for a magnesium ion electrochemical cell are described herein. The salts are magnesium tetra(perfluoroalkoxy)metalates, optionally solvated with up to seven ether molecules coordinated to the magnesium ion thereof. In one embodiment, the salt has the empirical formula: Mg(Z)n2+[M(OCR3)4?]2 (Formula (I)) wherein Z is an ether; n is 0 to about 7; M is Al or B; and each R independently is a perfluoroalkyl group (e.g., C1 to C10 perfluoroalkyl). The magnesium salts of Formula (I) are suitable for use as electrolyte salts for magnesium ion batteries (e.g., 5 V class magnesium batteries) and exhibit a wide redox window that is particularly compatible with magnesium anode. The salts are relatively cost effective to prepare by methods described herein, which are conveniently scalable to levels suitable for commercial production.

說(shuō)明書

The thermal stability of Mg(AlPFTB4)2 was investigated by thermogravimetric analysis (TGA). FIG. 6 provides plots of sample weight versus temperature for Mg(THF)7(AlPFTB4)2, demonstrating thermal stability up to about 240° C. The analysis shows that the compound is stable until 150° C., after which the sample lost 5.7% of its weight (1.38 mg) from 150 and 210° C., and 7.19% (1.74 mg) from 210 to 240° C. Above 240° C., almost the entire mass was rapidly lost presumably via sublimation. While little is known about the possible chemical changes during sublimation, these results show that the compound was stable up to 240° C. without sublimation.

Ionic conductivities of solutions of Mg(AlPFTB4)2 in triglyme at various concentration were calculated from impedance values that were measured with AC impedance spectroscopy. FIG. 7 shows a plot of ionic conductivity versus concentration for Mg(AlPFTB4)2 in triglyme solvent. This analysis shows that the ionic conductivity initially increases with concentration, peaks at about 0.3 M, and then decreases thereafter. The maximum solubility of the compound in triglyme is 0.4 M. These results suggest that ion association occurs at concentration above 0.2 M in triglyme, which reduces the amount of free ions in the solution.

EXAMPLE 3 Exemplary Electrochemical Cell and Battery

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋