The battery cell further comprises a division plate in cell inner chamber. The division plate in cell inner chamber is disposed on the division plate connecting part of the lower case of the shell and divides the battery cell inner chamber into a first inner chamber of the battery cell and a second inner chamber of the battery cell. There is no-liquid cell-core disposed in the second inner chamber of the battery cell. The injection interface and the discharge interface is in fluid communication with the second inner chamber of the battery cell. Preferably, the first inner chamber of the battery cell is sealed from the second inner chamber of the battery cell. Therein, there may be disposed dry gas in the first inner chamber of the battery cell or the second inner chamber of the battery cell. The dry gas is selected from the group consisting of nitrogen, air, flam-resistant gas (for example sulfur hexafluoride), and inert gas (helium, neon, argon, krypton, xenon), or a mixture thereof. Preferably, the water content of the dry gas is ≤1 ppm. A gas pressure regulating valve is provided on the top lid of the shell. The gas pressure in the first inner chamber of the battery cell is regulated by the gas pressure regulating valve so that the gas pressure in the first inner chamber of the battery cell is larger than or equal to the gas pressure in the second inner chamber of the battery cell, and the gas pressure in the first inner chamber of the battery cell is more than one atmosphere pressure. That is to say, gas can be filled in the first inner chamber of the battery cell through the gas pressure regulating valve. Due to the gas pressure difference between the first inner chamber of the battery cell and the second inner chamber of the battery cell, the sealing between the division plate in cell inner chamber and the lower case of the battery cell shell is enhanced, so as to enhance the sealing between the top lid of the battery cell shell and the lower case of the battery cell shell. The division plate connecting part provided on the lower case of the shell can be any of the methods that can be connected and fixed to the division plate in cell inner chamber, for example, protruded portion, recessed portion, step portion and so on. The battery cell of the lithium slurry battery of the present disclosure may not be sealed by the conventional welding method, but is connected and sealed with detachable connecting parts. Thus, in order to ensure that the sealing performance of the battery cell of the whole lithium slurry battery meets the requirement, the gas pressure difference between the first inner chamber of the battery cell and the second inner chamber of the battery cell is further used to enhance the sealing on the base of the sealing of the detachable connecting parts. The second inner chamber of the battery cell may be evacuated or left with a small amount of dry gas. The gas pressure in the first inner chamber of the battery cell is larger than or equal to the gas pressure in the second inner chamber of the battery cell, so as to effectively take use of the gas pressure difference to achieve the sealing. Preferably, the gas pressure in the first inner chamber of the battery cell is larger than one atmosphere pressure.