Since in terms of electrodynamics the phase control element (1) is advantageously a purely passive component that does not need to include any nonlinear components whatsoever, its function is entirely reciprocal. That is, a wave that runs from bottom to top through the phase control element (1) is rotated in its phase in the same way as a wave that runs from top to bottom through the phase control element (1).
The wave impedance of the arrangement is also, because of its construction, entirely independent of the relative phase position of the incoming and outgoing wave, which is not the case in nonlinear phase shifters, such as semiconductor phase shifters or liquid crystal phase shifters. In them, the wave impedance is dependent on the relative phase position, which makes these components difficult to control.
The at least two polarizers (4a) and (4b) are preferably mounted perpendicularly to the propagation direction of the incident wave and parallel to one another in the holder (3). The axis of rotation (6) is preferably located in the propagation direction of the incidence wave.
The controllable phase control element here operates practically loss-free, since given suitable design, the losses induced by the polarizers (4a, b) and the dielectric holder (3) are very slight. At frequencies of 20 GHz, for example, the entire losses amount to less than 0.2 dB, which is equivalent to an efficiency of more than 95%. Conventional phase shifters, conversely, typically already have losses of several dB at those frequencies.