In order to achieve the aforementioned purposes, a hybrid vehicle on board unit supporting WAVE-V2X and C-V2X according to an embodiment of the present disclosure V2X communication may include a WAVE-V2X antenna for transceiving a WAVE-V2X signal; an LTE-V2X antenna for transceiving an LTE-V2X signal; an LTE antenna for transceiving an LTE signal; a GNSS antenna for transceiving a GNSS signal; a WAVE-V2X communication module for demodulating the WAVE-V2X signal received through the WAVE-V2X antenna to obtain WAVE-V2X communication information, and for modulating the WAVE-V2X communication information to generate the WAVE-V2X signal; an LTE-V2X communication module for demodulating the LTE-V2X signal received through the LTE-V2X antenna to obtain LTE-V2X communication information, and for modulating the LTE-V2X communication information to generate the LTE-V2X signal; a GNSS module for processing the GNSS signal received through the GNSS antenna to obtain location information of a vehicle; an LTE module for processing the LTE signal received through the LTE antenna to obtain additional information for operation of the vehicle, and for transmitting the WAVE-V2X communication information or the LTE-V2X communication information and the location of the vehicle to an external central control server through the LTE antenna; and a controller for determining a signal having a greater intensity of the WAVE-V2X signal received through the WAVE-V2X antenna and the LTE-V2X signal received through the LTE-V2X antenna, and for controlling the WAVE-V2X communication module and the LTE-V2X communication module to process only the one determined signal.