白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Adaptive voltage modification (AVM) controller for mitigating power interruptions at radio frequency (RF) antennas

專利號(hào)
US10868471B2
公開日期
2020-12-15
申請(qǐng)人
T-Mobile USA, Inc.(US WA Bellevue)
發(fā)明人
Steve Fischer
IPC分類
H02M3/335; H01Q1/00; G01R27/02; G05F1/62
技術(shù)領(lǐng)域
avm,rru,voltage,power,controller,may,dc,antennas,boost,metadata
地域: WA WA Bellevue

摘要

This disclosure describes techniques to identify and mitigate an effect of a power interruption that impacts the operation of Radio Frequency (RF) antennas associated with a telecommunications network. More specifically, an Adaptive Voltage Modification (AVM) controller is described that is configured to monitor and detect a change in voltage that occurs during a power transmission from a Direct Current (DC) power source to a Remote Radio Unit (RRU). A power interruption may include a power disruption or a power surge. The AVM controller may be configured to cause a potential transformer that is coupled between the DC power source and the RRU to incrementally step-up or step-down the voltage of a power transmission from the DC power source. In this way, the AVM controller may preemptively mitigate an impact of a power interruption on Quality of Service (QoS) parameters associated with signal data transmitted by the RF antennas.

說(shuō)明書

Consider a non-limiting example, whereby the AVM controller analyzes current environmental metadata associated with a DC power source and RRU, and in doing so, identifies an occurrence of a meteorological event. The AVM controller may further use one or more trained machine learning algorithms to correlate the current environmental metadata with data-points of the analysis model and infer that a voltage-boost is likely required to ensure that the QoS parameters associated with signal data (i.e. voice and data communications) transmitted by the RF antennas is not compromised by the meteorological event.

In another non-limiting example, the AVM controller may analyze current environmental metadata to predict an impending network congestion. For example, the current environmental metadata may include a current time of day or a current day of the week. The AVM controller may further use one or more trained machine learning algorithms to correlate the current environmental metadata with data-points of the analysis model to infer that a voltage-boost is likely required to overcome the impending network congestion. It is noteworthy that the historical environmental metadata used to develop the analysis model may include corresponding times of the day or current days of the week.

In various examples, the AVM controller may preemptively initiate a voltage-boost at a point-in-time prior to an impending network congestion or meteorological event. For example, the AVM controller may identify a step-up voltage rate that is associated with a potential transformer that is coupled between the DC power source and the RRU. The step-up voltage rate may correspond to an incremental voltage-boost that occurs over a one-minute time interval. The step-up voltage rate may be one volt-per-minute, two volts-per-minute, however, any step-up voltage rate is possible.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋