The loss compensation conductive layer 309 is formed on the loss compensation layer 308. For example, the loss compensation conductive layer 309 may be formed by vapor depositing a conductive material on the loss compensation layer 308. The conductive material may include, for example, Ag, Cu, Au, Al, Ca, W, Zn, Ni, Fe, Pt, carbon steel, lead, grain-oriented electrical steel, manganin, constantan, stainless steel, and/or graphite. In more detail, the loss compensation conductive layer 309 may be formed by vapor depositing the conductive material on an upper edge of the loss compensation layer 308, and into a laminated structure.
FIG. 4 is a diagram illustrating still another example of a resonance apparatus 400 including a reflective layer 404. The resonance apparatus 400 includes an air-gap cavity structure and a Bragg reflector structure. The air-gap cavity structure includes a lower electrode, an upper electrode, and a piezoelectric layer, which are arranged on an upper portion of a substrate, with a predetermined cavity arranged between the substrate and the lower electrode. The Bragg reflector structure includes a reflective layer arranged on the upper portion of the substrate that reflects an acoustic wave. According to FIG. 4, the resonance apparatus 400 includes a substrate 401, a lower electrode 402, the reflective layer 404, a piezoelectric layer 405, an upper electrode 406, and conductive layers 407 and 408. A cavity 403 is formed between the lower electrode 402 and the substrate 401 (or the reflective layer 404).