白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Superconducting non-destructive readout circuits

專利號
US10868540B2
公開日期
2020-12-15
申請人
Anna Y. Herr; Quentin P. Herr; Ryan Edward Clarke; Harold Clifton Hearne, III; Alexander Louis Braun; Randall M. Burnett; Timothy Chi-Chao Lee(US VA Falls Church)
發(fā)明人
Anna Y. Herr; Quentin P. Herr; Ryan Edward Clarke; Harold Clifton Hearne, III; Alexander Louis Braun; Randall M. Burnett; Timothy Chi-Chao Lee
IPC分類
H03K19/195; G11C11/44; H03K3/38; G06N10/00
技術(shù)領(lǐng)域
josephson,ndro,rql,junction,lclk,input,circuit,tail,j2,logical
地域: MD MD Ellicott City

摘要

Non-destructive read out (NDRO) circuits are provided for use in reciprocal quantum logic (RQL) superconducting systems. Each NDRO circuit includes a “body” circuit that provides a single or multi-state sub-critical bias current to one or many independent “tail” circuitries. Each “tail” has minimal effect on the “body” thereby preventing any interference or destruction to the state of the “body” circuitry. The circuits reduce device count and thereby increase circuit density, simplify and reduce the cost of fabrication, and provide functionality not available in existing designs, such as the ability to write a state and read it in the same operation cycle. The NDRO circuits provide more compact unit cells useful in memory or logic arrays, demanding fewer resources with increased functionality. The circuits also provide compact cells for AND, AND-OR, A-NOT-B, inverter, multiplexer, and demultiplexer gates.

說明書

Thus, FIG. 21 shows an example of an array 2100 of multi-tail NDRO gates 2102 arranged as memory or logic elements, each of which can correspond, for example, to any of circuits 100, 900, 1200, or a multi-tail version of circuit 1300 as described above. Each gate 2102 can have a body B and multiple tails T. Read lines are illustrated as solid and write lines are illustrated as dashed. Word lines are illustrated as thin horizontal lines and bit lines are illustrated as thick vertical lines. Word read enable lines 2104 are represented as thinner solid lines each connecting to the NDRO inputs of tails T in a row. Word write enable lines 2106 are represented as thinner broken lines each connecting to the LCLK inputs of bodies B in a row. Bit read data lines 2108 are represented as thicker solid lines each connecting to the QO outputs of tails T in a column. Bit write data lines 2110 are represented as thicker broken lines each connecting to the DI inputs of bodies B in a column. While the bit lines are defined as columns and word lines as rows in this particular image, this arrangement is arbitrary and could be reversed. Other connections (e.g., for AC clocks or ground) are omitted from FIG. 21 for clarity. The array 2100 can be of any suitable size (i.e., having any number of columns and rows), and can be used as a memory or as a logic array, e.g., a programmable logic array (PLA) or field-programmable gate array (FPGA) to output evaluated logic functions. In the illustrated example of FIG. 21, two word read enable lines 2104 are associated with each row of NDRO gates 2102 and two bit read data lines 2108 are associated with each column of NDRO gates 2102, but the number of such lines can correspond to the number of tails in each NDRO gate 2102 and thus can be fewer or greater than two.

權(quán)利要求

1
微信群二維碼
意見反饋