白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Hybrid MU-MIMO spatial mapping using both explicit sounding and crosstalk tracking in a wireless local area network

專利號(hào)
US10868589B2
公開日期
2020-12-15
申請(qǐng)人
Quantenna Communications, Inc.(US CA San Jose)
發(fā)明人
Sigurd Schelstraete
IPC分類
H04B7/0452; H04B7/0456; H04L5/00; H04B17/336; H04L25/02; H04B7/0417; H04L12/26; H04W84/12; H04W88/08
技術(shù)領(lǐng)域
sounding,mu,mimo,wap,crosstalk,downlink,packet,channel,precode,precoding
地域: CA CA San Jose

摘要

Systems and methods for a wireless station supporting wireless communications with an associated wireless access point (WAP) on a wireless local area network (WLAN) where the wireless station can include hardware processing circuitry to perform hybrid spatial mapping feedback operations for multi-user (MU) multiple-input multiple-output (MIMO) downlinks from the WAP to a group of associated stations. An exemplary implementation includes a channel estimation circuit to determine a communication channel responsive to an explicit sounding from the WAP, and to transmit channel sounding feedback to the WAP indicating the determined communication channel; and a crosstalk tracking circuit to determine an amount of crosstalk from portions of a downlink MU-MIMO communication packet targeted for other stations in the group of associated stations, and to transmit crosstalk feedback to the WAP as to the determined amount of crosstalk.

說(shuō)明書

FIG. 3 is a timeline of a MU-MIMO downlink in accordance with an embodiment of the invention incorporating hybrid spatial mapping using both explicit sounding together with crosstalk tracking. The timeline shows a wireless access point (WAP) 300 and associated stations 302A-B of a residential WLAN during various phases of operation associated with an MU-MIMO downlink in an embodiment of the invention where both the WAP and the stations include complementary capabilities to enable hybrid MU-MIMO spatial mapping. These capabilities reduce the frequency of explicit soundings by extending the post sounding interval over which a reliable downlink can be maintained. Each packet in the MU-MIMO downlink has a payload portion which contains distinct blocks of data each destined for a corresponding one of the stations in the MU-MIMO downlink group. The MU-MIMO packet allows transmission of discrete payload data to two or more receiving stations at the same time, thus increasing WLAN throughput. Ideally, each station in the group receives a common MU-MIMO packet header, and its own a distinct block of data. The distinct blocks of data in the MU-MIMO packet payload are said to be spatially mapped during transmission so as to arrive at each corresponding one of the stations, without interference, a.k.a. crosstalk, from the distinct blocks of data destined for other stations in the group. The spatial mapping involves complex signal processing using the multiple antennas of the WAP and a precoding matrix to spatially separate the distinct blocks of data in the MU-MIMO packet payload among the targeted MU-MIMO group of stations. The determination of the precode matrix, requires detailed channel information feedback from each of the targeted stations in response to an explicit sounding. The feedback from each station as to its communication channel with the WAP is aggregated by the WAP and used to determine the precode matrix for transmitting subsequent MU-MIMO downlink packets. The minute changes in the communication channels which would otherwise blur the spatial separation shortly after an explicit sounding are corrected for by using crosstalk feedback from one or more of the targeted stations during the MU-MIMO downlink. This avoids frequent explicit soundings and extends the downlink interval between explicit soundings, e.g. by 500%.

權(quán)利要求

1
微信群二維碼
意見反饋