Note that while the circuit portions themselves are not components or circuit portions solely dedicated to the function of power filtering, the different circuit portions can collectively act as a power filter(s) through their operation. More specifically, the frequency and/or voltage for one circuit portion relative to the frequency and/or voltage for another circuit portion within a given circuit can collectively act as a power filter when the frequency and/or voltage for the one circuit portion is at least twice or no more than half of the frequency and/or voltage, respectively, for the other circuit portion. It is believed that such an arrangement can act as a power filter due to reduction of passing of data over the power system between the two circuit portions. For example, when one circuit portion operates at a frequency of 50 kHz and the other circuit portion operates at a frequency of 100 kHz, the instances of when the electromotive forces of both circuit portions overlap or synchronize are reduced due to the differing frequencies, which in turn reduces the extent to which data can pass over the power system between the two circuit portions. Similarly, when one circuit portion operates at a voltage of 5 Volts and the other circuit portion operates at a voltage of 10 Volts, the electromotive forces from the higher voltage obscures the electromotive forces from lower voltage, which in turn reduces the extent to which data can pass over the power system between the two circuit portions.