User equipment (UE) configured to operate over modern radio access technologies (RATs), such as Long-Term Evolution-Advanced (LTE-A), typically support carrier aggregation techniques in which communication between the UE and a network can be conveyed over multiple component carriers (CC) to increase available bandwidth for communication between the UE and the network. Further, the UE may employ an array of multiple antennas for transmitting and/or receiving multiple-input multiple-output (MIMO) communications to and/or from the network. Generally, each antenna of the array is associated with a corresponding radio frequency (RF) chain that includes, without limitation, low noise amplifiers (LNA), down converters, filters, variable gain amplifiers (VGA), analog-to-digital converters (ADC), digital-to-analog converters (DAC), or power amplifiers (PA). The ADC/DAC outputs/inputs are processed by baseband resources of baseband circuitry, whereby each baseband resource may be configured to perform MIMO processing, turbo decoding, and/or other digital signal-processing algorithms for signal reception and recovery. Each RF chain and corresponding baseband resource may be referred to as a ‘transceiver resource’ and the number of transmitter RF chains and receiver RF chains may provide N×M MIMO antenna configurations where N(≥1) is the number of transmitter RF chains and M (≥2) is the number of receiver RF chains. Due to cost constraints, power-consumption constraints, and/or size constraints of the UE, the number of transceiver recourses available to the UE is generally limited.