白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

LTE resource allocation

專利號
US10873952B2
公開日期
2020-12-22
申請人
Google LLC(US CA Mountain View)
發(fā)明人
Jibing Wang
IPC分類
H04W64/00; H04W72/08; H04B7/08; H04W76/15; H04L5/00; H04B7/0413; H04W72/04
技術(shù)領(lǐng)域
ue,ccs,kpi,cc,mimo,enb,expected,resources,available,location
地域: CA CA Mountain View

摘要

A method for allocating available transceiver resources across different component carriers (CC) includes obtaining a carrier aggregation capability that includes a list of available CCs supported by the UE at a current location for simultaneous communication with a carrier aggregation capable network. The method also includes, for each of the available CCs, obtaining an expected key performance indicator (KPI) associated with the corresponding available CC at the current location. The method also includes allocating the available transceiver resources across the available CCs based on the expected KPIs at the current location.

說明書

The MME is a key control-code for the LTE network 100. The MME manages session and states and authenticates and tracks a UE 300 across the network 100. The SGW is responsible for routing packets through the network 100. The PGW is an interface between the LTE network 100 and other packet data networks, manages quality of service (QoS), and provides deep packet inspection (DPI).

Each base station 102 may include an evolved Node B (also referred as eNode B or eNB). An eNB 102 includes hardware that connects to an air interface 110 (e.g., a mobile phone network) for communicating directly with the UEs 300. For instance, the eNB 102 may transmit downlink LTE signals (e.g., communications) to the UEs 104 and receive uplink LTE signals from the UEs 300 over the air interface 110. The eNB 102 does not have a separate controller element and, thus, simplifies the architecture of the network 100. In addition, the eNB 102 embeds its own control functionality, since the eNB 102 does not include a separate controller element. The eNB 102 uses multiple protocols when interfacing with different elements. For example, the eNB 102 uses an X2-interface 112 when communicating with other eNBs 102 in the network 100 and uses an S1 interface 114 for communicating with the EPC 106. The S1 interface 114 may include an S1-MME interface for communicating with the MME and an S1-U interface for interfacing with the SGW. Accordingly, the S1 interface 114 is associated with a backhaul link for communicating with the EPC 106.

權(quán)利要求

1
微信群二維碼
意見反饋