In some examples, the network 100 corresponds to a carrier aggregation-capable network supporting carrier aggregation where multiple component carriers (CCs) 220 are aggregated and jointly used for transmission to/from a single device (e.g., UE 300). The network 100 may include an LTE-Advanced network under Release 10 (LTE Rel-10) providing higher bitrates while still fulfilling requirements set by existing 4G networks. Under LTE Rel-10, a CC 220 may have a bandwidth of 1.4, 3, 5, 10 or 20 Megahertz (MHz) and a maximum of five CCs 220 may be aggregated to provide a maximum aggregated bandwidth equal to 100 MHz. Future releases, such as LTE Release 13 (LTE Rel-13), may support up to a maximum of thirty-two (32) CCs 220. In FDD-networks 100, the number of aggregated carriers may be different for downlink (DL) communications and uplink (UL) communications. However, the number of UL CCs 220 is always equal to or less than the number of DL CCs 220 and individual CCs 220 can also be of different bandwidths. In TDD-networks 100, the number of CCs 220 as well as the bandwidths of each CC 220 are normally the same for DL and UL communications.
The easiest way to arrange aggregation is through contiguous CCs with the same frequency band, referred to as intra-band contiguous carrier aggregation. However, due to multiple different operator frequency allocation scenarios, intra-band continuous carrier aggregation may not always be possible. Accordingly, non-contiguous allocation may be arranged for one of intra-band or inter-band. Under intra-band non-continuous, the aggregated CCs 220 belong to the same frequency band, but include a gap or gaps in between. Under inter-band non-continuous aggregation, the aggregated CCs 220 belong to different operating frequency bands.