As another example, the actuator 660 may include a rotary electric motor 663 that drives a rotating shaft 665 (aka rotor) and a gear assembly that converts the rotational movement of the shaft 665 into translational movement (see FIGS. 6A-6B). For example, the gear assembly may include threading on the shaft 665, as well as a linkage 667 with complementary threading to engage with the threading on the shaft 665 (see FIG. 6A). The rotary electric motor 663 may be controlled by open-loop or closed-loop control methods. For example, in an open-loop control method a controller (e.g., the control circuitry 800) may drive mechanical linkage 651 to a pre-programmed position that corresponds to the cold plate 630 being in up or down position. In a closed-loop control method, a controller (e.g., the control circuitry 800) may rely on a sensor that detects a position of the shaft 665, linkage 667, or mechanical linkage 651, and turn on or off the motor 663 based on this position. Alternatively, the sensor could detect current in the motor 663 indicating a level of force applied by the mechanical linkage 651.
Although the second link 653 is illustrated and described above as being a distinct part form the plunger 662 and the linkage 667, in some examples the second link 653 and plunger 662 or linkage 667 could be integrally connected parts of the same continuous body.