Thus, disclosed herein are example systems that use liquid cooling, rather than forced-air cooling, to cool pluggable modules. Liquid cooling (sometimes called direct liquid cooling, or DLC) involves flowing liquid coolant (e.g., water) through a cooling loop in a computing system and thermally coupling the liquid coolant to the components that need to be cooled, so that heat generated by the components is transferred into the liquid coolant and carried out of the computing system. The liquid coolant is thermally coupled to the components that need cooling by a device called a cold plate. The cold plate is thermally conductive and is either (a) in direct contact with the liquid coolant (e.g., the liquid flows through an interior channel within the cold plate), or (b) in contact with a pipe or tube that carriers the liquid coolant. The cold plate is also thermally coupled to the component that needs cooling. Thus, heat generated by the component is conducted into the cold plate, and from the cold plate it is conducted into the liquid coolant.
Although liquid cooling is, in general, a viable alternative to air-based cooling, the context of pluggable modules poses some special difficulties for liquid cooling that may not be encountered when cooling other components. In particular, the fact that pluggable modules are intended to be easily added to and removed from the system by a user post-manufacture, means that a liquid cooling loop of the system cannot be directly affixed to the pluggable modules in the same way that it would be to a more permanent fixture of the system (like a processor).