The front tape feeding mechanism 13 is disposed in a lower portion close to the front side of the rail 12. The front tape feeding mechanism 13 is configured of a first feeding motor 131, a first gear 132, a second gear 133, a first sprocket 134, a second sprocket 135, and the like. An output shaft of the first feeding motor 131 is rotatably connected to the first sprocket 134 and the second sprocket 135 via the first gear 132 and the second gear 133 through gear coupling. Output teeth of the first sprocket 134 and the second sprocket 135 project upward from a gap formed between the rails 2 and engage with engagement holes of the carrier tape.
The rear tape feeding mechanism 14 is disposed in a lower portion close to the rear side of the rail 12. The rear tape feeding mechanism 14 is configured of a second feeding motor 141, a third gear 142, a fourth gear 143, a third sprocket 144, a fourth sprocket 145, and the like. An output shaft of the second feeding motor 41 is rotatably connected to the third sprocket 144 and the fourth sprocket 145 via the third gear 142 and the fourth gear 143 through gear coupling. Output teeth of the third sprocket 144 and the fourth sprocket 145 project upward from the gap formed between the rails 12 and engage with engagement holes of the carrier tape. The first feeding motor 131 and the second feeding motor 141 correspond to a driving device of the present disclosure which supplies a taped electronic component to a predetermined position.