白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Integrated sensor assembly for LED-based controlled environment agriculture (CEA) lighting, and methods and apparatus employing same

專利號
US11013078B2
公開日期
2021-05-18
申請人
Agnetix, Inc.(US CA San Diego)
發(fā)明人
Ihor Lys; Nicholas Maderas
IPC分類
H01R33/00; F21V7/04; H05B45/12; H05B45/18; H05B47/11; H05B47/125; F21V29/58; F21V33/00; F21S4/28; F21Y115/10; F21W131/109
技術(shù)領(lǐng)域
lighting,fixture,coolant,sensor,may,in,fixtures,be,board,hydronics
地域: CA CA San Diego

摘要

An integrated sensor assembly provides multiple sensing modalities to monitor an agricultural environment, and may be employed in or used with controlled environment agriculture (CEA) systems to control and maintain improved growth conditions for various plants. In one exemplary implementation, an integrated sensor assembly includes sensors to monitor parameters important to plant growth, such as a natural light sensor, an air temperature sensor, a relative humidity sensor, an air flow sensor, a carbon dioxide (CO2) sensor, and a remote infrared (IR) temperature sensor. The sensors are mounted onto a single circuit board, which is then placed inside a housing for protection from the ambient environment. The housing can include one or more openings and apertures to facilitate sensing with protective covers where appropriate. A USB port can be included to supply electrical power and transfer of data to and from the integrated sensor assembly (e.g., to provide plug-and-play functionality).

說明書

The data recorded by the sensors may be used to provide insight on various aspects of plant development including, but not limited to the health of the plants, yield rates, and projected harvest dates. The data may also be used to provide feedback to various control systems deployed in the environment in order to adjust the environmental parameters described above. These control systems may include, but are not limited to, lighting systems, heating/cooling systems (e.g., hydronics, air conditioning), air flow systems, and humidity conditioning systems.

Conventional sensors in CEA systems, however, are typically designed and deployed irrespective of other sensors disposed in the environment and the control systems to which they may be coupled to. For example, different types of sensors may each have to be installed separately even if the sensors are monitoring the same region of the environment. In some instances, a separate platform or support structure may be installed (e.g., a frame, a rafter) to enable the sensors to monitor an otherwise inaccessible region of the environment (e.g., right above the plants). In another example, each type of sensor deployed in the environment may be connected to a power source and/or a control system (e.g., a computer) using a proprietary connection mechanism (e.g., different types of cables). In an environment where numerous sensors may be deployed, the integration of the sensors into the CEA system may be hindered by practical limitations related to separately connecting each sensor to the power source/control system. In yet another example, each sensor may be communicatively coupled to a control system using a separate system (e.g. a different interface on a computer, different communication channels), which further increase the difficulty in leveraging multiple sensors to monitor and control the environment.

權(quán)利要求

1
微信群二維碼
意見反饋