Wireless communication networks are widely deployed to provide voice as well as data services. These wireless networks may be multiple-access networks which are capable of supporting multiple users by sharing the available network resources. Examples of multiple access network formats include Universal Terrestrial Radio Access Network (UTRAN), Evolved UTRAN (E-UTRAN), Code Division Multiple Access (CDMA) Networks, Time Division Multiple Access (TDMA) Networks, Frequency Division Multiple Access (FDMA) Networks, Orthogonal FDMA (OFDMA) Networks, and Single Carrier FDMA (SC-FDMA) networks. A typical wireless communication network may include a number of base stations or eNodeBs that support voice and data communication for multiple user equipments (UEs). In a traditional cellular deployment, suitable powered macrocell were deployed to cover sufficiently large areas. However, with macrocell only deployment suffers quick capacity degradation as the number of user equipment (UE) operating in the macrocell coverage areas increases.
Therefore, the telecom industry is advancing towards reinforcing the macrocell deployment with one or multiple small cell/Wi-Fi access point with backhaul of LAN on optic fiber placed at multiple strategic locations within one or more macro coverage areas, often referred to as Heterogeneous Network (HetNet). For instance, the macro cells are reinforced by low-powered small cells, micro cell base station, pico cell base station, or femto cell base station. Thus, to provide last mile connectivity and to reduce coverage blackspots in the network coverage area, service providers are deploying small cells and micro cells integrated with Wi-Fi access points over LAN in offices, malls, shopping complexes etc.