In addition, the signal processor 14R processes the right ear signal SR and generates the reversed-phase signal SR′ with an adjusted level in such a manner that the speakers 11RP and 11RS reproduce the right ear signal with directivity. Here, in a way similar to the above-described signal processor 14L, the signal processor 14R is also capable of switching the processing of generating the reversed-phase signal SR′ on the basis of the control signal CL in such a manner that the directivity of the right ear signal becomes bidirectional directivity or unidirectional directivity. The speaker 11RS is driven by the reversed-phase signal SR′ obtained by the signal processor 14R.
The acoustic device 10L illustrated in FIG. 13 reproduces the left ear signal with bidirectional directivity or unidirectional directivity by using the speakers 11LP and 11LS arranged back-to-back. Therefore, with regard to the left ear signal, the level of sound that propagates toward a right ear direction of a listener M (indicated by an arrow b) becomes lower than the level of sound that propagates toward a left ear direction of the listener M (indicated by an arrow a), and this makes it possible to reduce a crosstalk component related to the left ear signal. In addition, the acoustic device 10L reproduces the right ear signal with bidirectional directivity or unidirectional directivity by using the speakers 11RP and 11RS arranged back-to-back. This also makes it possible to reduce a crosstalk component related to the right ear signal in a similar way.